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ABSTRACT

An infinite stringer which is assumed to be partially bonded

to a plate through a layer of adhesive is considered. The stringer

is assumed to have bending as well as longitudinal stiffness. The

effect of the stringer's bending rigidity on the stress intensity

factor at the tip of the crack is illustrated. Shear stress dis-

tribution between the plate and the stringer and the stress inten-

sity factors will be obtained from the solution of a system of

Fredholm integral equations which represent the continuity of dis-

placements along the line of bond.
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INTRODUCTION

In a previous paper [1], the effect of a partially debonded

infinite stringer on the stress intensity factor at the crack tip

has been investigated. It was assumed that the stringer which has

been located perpendicular to the crack had no bending stiffness.

The conclusion was that the stiffening effect of the stringer was

very small if it is not placed very close to the crack tip or on

the crack itself and/or if the length of the debonding is approxi-

mately more than twice the crack length (see [1]).

The importance of the problem is mainly due to the use of

stringers in structures to prevent catastrophic failure. Usually

the stringers used will have some bending stiffness in the plane

of the plate which may not be negligible. Hence the purpose of

the present paper is to study its effect on fracture arrest.

The method used here will be similar to the one used in [1]

and [2]. Again, this approach does not put any restriction on the

number of stringers.

FORMULATION OF THE PROBLEM

The perturbation problem,where the crack surfaces are subject

to unifprm pressure q and the loading at infinity is zero, will be

considered. Adhesive will be treated as a shear spring and the

shear stresses transmitted through the adhesive will be considered

as body forces for the plate solution (see [1]).
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If L denotes the line x= d, b<y < , in view of the symmetry,

the continuity of the displacements can be written as (see Figure

1)
h

[u (y) + iv y) [u () + iv s (y)] da [P (y) + iP 2 (y)]

y on L (1)

where as in [1], Pa is the shear modulus of the adhesive, ds is

the width of the stringer and ha is the thickness of the adhesive.

P1 (y) and P2 (y) are the horizontal and the vertical components of

the shear force per unit length of the stringer (see Figure 2).

Here, the displacements of the plate u + iv and of the
p p

stringer us + ivs can be given as follows:

us( 1 ksl(yyo)P 1(yo)dy
s sL

vs(y) -1  f ks2(y',y)P 2 (Yo)dy° , y on L (2)

where

y 3 + 3y2 y , y > y

ksl(Yyo) = 3 2
[y3 + 3yy 2  , Y < Y

y , YO > y

ks2 , o) = Yo ' Y2 < y  
(3)

v (0) = 0

and E , As and Is are the elastic modulus, cross-sectional area

and the moment of inertia of the stringer respectively.
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On the other hand

u p(y) + iv (y) = qk(y) + f [ kpl(yyo)S(o)

+ kp2(y,y)S(y) ] dy , y on L (4)

where as in [1] and [2]

ko (Y) = [K -a -a + (-z)z + (l-K)z]
4p 2a

7z -a

1 2 z
4 [(K-1)Re z -a + (1-K)x - 2yIm i4 p

i/zZ -a

+ [(K+1)Imvz -a + (l-K)y - 2yRe z
41p z2a2

1/z -a

S [f (Y) + if 2 (y)] f2 (0) = 0, xi >a (5)

p

where K= (3-v)/(i+v), pp v are the elastic constants of the plate,

2a is the crack length, d is the distance of the stringer to the

mid-point of the crack, and

z = d+iy , y on L

Pl(Yo) + iP 2 (yo)
S(0y ) = 2nh (+K) (6)

To determine kpl(Y'Y o ) and kp2(yy o ) we will use the expres-

sions given in [11] for the displacements at z= x+iy of a plate

with a crack and subjected to concentrated forces X + iY acting at

zo = x o + iy
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2p (u +iv ) = S{ -K[log(z-z o ) + log(z-z)]

1 2
+ (z,) (z, [ 1o) + (z,zz + (zz o ) o)

+ -i z -z
+ 2 [82(Z) - 2(z)] + ( o ) 05(z,z )}

z-z
0

z-z
+ [( ) - + K8 3 (z,z) - e3 (z,zo ) - 4 (z,zo)

z-z
o

+ KO 4 (Z,Zo) i + rigid body displacement (7)

where

22

@1(Z'Zo ) = log(zzo - a2 + /z2-a2 z -a )

02 (z) = log(z + z2-a

(Zo-zo)
83(z,o ) 0 [1 + f(z,zo)]

21/ 2 0
0

(z-z)4 (z,z ) z- f(z,z o)

2 z -a

(z-z)
05 (z,zo) = [f(z,z) - J(zo)] (8)

2Vz -a

and

22
I(z) = vz -a - z

J(z) = - -
/22
,z -a

I(z) - I(z o )
f(z,zo) = Z-

0 Z-Z 0

f(z,z 0 ) = J(z )
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f(z,z ) - J(z )  a2

z-z 2(z2-a 2) 3/2
o o

Z=Z
0

X + iY (9)
2S wh (1+K)p

From (7)-(9) the displacements due to concentrated forces

X + iY = -Pl(Yo) - iP 2 ( o ) = -2hp (1+K)S(y ) at zo

and X + iY = -Pl(Yo) + iP 2 ( 0 ) = -2hp (1+K)S(y ) at zo

can be found by superposition. Hence, after some manipulations

u + ivp = S(Yo)kpl (YY o ) + S(yo)k 2 ( Y o ) (10)

where

21pkpl(yYo ) = K[log(z-z o) + log(z-z)] 1 (z, +

+ I 1(z,z ) + K20 (z,zo) - )[0 2 (z) - 2 (z ) ]

z -z
) 05 (z,z) + 2 - K3(zz o ) 

+  3(z,z o

Z-Z 0

+ 04 (z,z 0 ) - K04 (z,zo )

2ppkp2 (y' 0 ) = K[log(z-z o ) + log(z-zo)] - [0(z,z) + (zz

+ [01(z,z o ) + K 201(z,zo) (1 )[K02(z) - 02(z)]

z -z

o+ 0 2 (zz) + .2 K 3 (ZZo) + 3 i,z)
z-z

0o

+ 04 (z,z0 ) - KO 4 (z,zO) (11)
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where

z = d + iy

zo = d + iy o  (12)

It is easily seen that if S(Yo) is defined per unit length

of L rather than a pair of concentrated forces, then kpl(Yy o) and

kp2(yyo) defined above represent the kernels of (4).

Also note that vs(y) and v (y) as defined in (2) and (4)

vanish on the real axis (y= 0).

Finally, from (1), (2), (4) and (6) we arrive at the follow-

ing system of Fredholm integral equations of the second kind with

kernels having logarithmic singularities.

P1 (y) + f [kl(y,o)P 1(yo ) + k 2 (yyo)P2 (yo)]dyo = y l qfl(y)
L

P 2 (y) + f [k 3 (y,Yo)P l (Yo ) + k 4 (',yo)P2(Yo)]dyo = y l qf 2 (y)
L

y on L (13)

where

k 1 (y,y o ) = Y3 ksl(y,yo) - Y2 Re[21pkpl(yyo ) + 2Ppkp2(y,yo)]

k 2(yy) = Y2 Im[2pkpl(yy) - 2pkp2 o

k 3 (y,y o) = Y2Im[29pkpl('Yo ) + 2pkp2 ( 1Yo)]

k 4 (Y,Yo) = Y4 ks2(yYo) - Y2 Re[2p kpl (Yyo ) - 2Ppkp2(YYo)]

(14)

and
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ds a

Yl

Y1 =4hap

Y1
Y2 7 (l+K)h

p

d ia
Y3 - 6EsI sha

dvisa (15)
s s a
ssa

THE STRESS INTENSITY FACTORS

The stress intensity factors will be defined as

K1 - iK 2 = lim [/(x-a)][o (x,O) iT xy(x,0)] (16)
x+a

Due to symmetry K2 E 0. K1 can be obtained as follows [2]:

1 - + f a(y )dy (17)

/a o L

where

=c~y,[ ° + I(z o )  Z -Z
o a -z a -zc (y O )  Re S(Yo) az (1 +aoo

S-z a- +I(zo)
+ z 0 0) J(z ) - K 0) (18)

a -z 0
0 o a -z

where

a for the right tip
a =

o -a for the left tip

zo = d.+ iy0  (19)

and S(y ) is given by (6).
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NUMERICAL SOLUTION AND DISCUSSION

The solution of (13) can be obtained by any standard method.

A simple collocation yields

N
P 1 (yi) + X [k 1 (YiYj)P 1 (Yj) + k2(yi'Yj)P2(Yj) ]yj

j=1 = 1 J i 2

= ylqfl(Yi)

N
P 2 (yi) + j [k 3 (Yi'Yj)P 1 (y j ) + k 4 (Yi'j)P 2 (j) ]Yj

j=1

= ylqf 2 (i ) , i= 1,...,N (20)

from which P 1(Yj) P 2 (yj), j =1,...,N are found.

Similarly for the stress intensity factor

K1  N
S2 a(yj)Ayj (21)

/a ao j=1

To compare the results with those of [1] we will choose

v=0.30, E =107psi (aluminum) and h = 0.09 in. Also, we will

assume that As = 0.165 a2 , Es= 1.24x10 7 psi, ha= 0.004 in. and

Pa = 1.65x10 5 psi. The effect of bending stiffness will be illus-

trated below by comparing the results of [1] with the results

obtained here for b= 0, d/a= 0.5 and ds/a= 0.2 and various values

of Is ranging from zero to infinity. From Figure 3 we see that

Kl/q/a assumes the value 0.817 and 0.509 for the left and right

tips respectively if there is no bending stiffness (Is = 0). These

agree with the Kl/q/a values obtained in [1]. As Is is increased

K1/qVa of the left tip asymptotically decreases from 0.817 to
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approximately 0.806 (0.011 difference) and of the right tip

increases from 0.509 to approximately 0.521 (0.012 difference).

Since location of the stringer in this case is such that its

effect is maximum, we can expect that these differences of stress

intensity factors for any other position of the stringer will be

much less. Hence the conclusion which can easily be drawn from

these results is that the bending stiffness of a stringer is

rather insignificant.

It should also be noted that the downward or upward trend of

the curves of Figure 3 is dependent on the location of the string-

er. In particular if the stringer is located in the middle (d= 0),

K1/q/a for the right as well as the left tip of the crack becomes

0.6786 assuming that b= 0, ds/a=0.2 and Is= a
4. Another expected

result will be given below for ds/a =0.2, Is = a 4

right tip left tip

0.9997 0.9998 b/a= 0, d/a =10

0.9985 0.9985 b/a =10, d/a =0.5

which means that the effect of the stringer diminishes substan-

tially as a result of the increasing length of the debonded portion

of the stringer or the distance of the stringer to the mid-point

of the crack.
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